(A) 0 (B) 2 (C) 4
(D) 8
First
Method:
The
given equation can be written as
Sin
x (1+sin2 x)= 1– sin2 x =cos2 x
⇒ sin x (2 – cos2 x) = cos2
x
⟹sin2 x (2– cos2 x)2
= cos4 x [after squaring both
sides]
⟹(1– cos2 x) (4– 4 cos2
x + cos4 x)= cos4 x
⟹ 4– 4 cos2 x + cos4
x – 4 cos2 x + 4 cos4 x – cos6 x = cos4 x
⟹ cos6 x −8cos4 x
+4cos2 x = 4
Answer
is option C
Second
Method:
If
x= 30°
sin
x + sin2 x +sin3 x = ½ + ¼ +1/8 = 7/8 ∼ 1
Here it is less
than 1 but in second expression , it will more than 4
Because when
sine decreases from 90° to 0° then cosine will increases in same range. i.e.
sin 30° =1/2 but cos 30° =√3/2
⟹ cos6 x −4cos4 x +8cos2
x = (√3/2)6 – 8(√3/2)4
+4 (√3/2)2
⟹ 27/32 – 4× 9/16 +8×
¾ = 147/32 which is more than 4
So
we can choose option C
You
can solve many questions by taking value. But in sine and cosine you should
careful at 45°
More
questions for practice:
1. If cot α +tan α
=m and 1/ cos α – cosα = n then
(A)
m (mn2)1/3 – n (nm2)1/3 = 1
(B)
m (m2n)1/3 – n (mn2)1/3 = 1
(C) n (mn2)1/3 – m
(nm2)1/3 = 1
(D) n (mn2)1/3 – m
(mn2)1/3 = 1
2.
If sin x + sin2 x = 1, then
the value of cos12 x + 3cos10 x +3cos8 x + cos6
x –1
(A) 0 (B) 1 (C) –1 (D) 2
3. If a cos3 α + 3a cos α sin2 α = m and a sin3 α + 3a cos2 α sin α = n then
(m + n)2/3 + (m– n )1/3 is equal to
(A) 2a2 (B) 2a1/3 (C) 2a2/3 (D) 2a3
4.
6(sin6 θ + cos6 θ) – 9 (sin4 θ + cos4
θ)
is equal to
(A)
–1 (B) 1 (C) –3 (D)
3
5.
(1 + tan α tan β )2 + (tan α – tanβ )2 is equal to
(A)
tan2 α + tan2
β (B) cos2 α cos2 β
(C)
sec2 α sec2 β (D) ) tan2
α tan2 β
6. If cos 1° cos 2° cos 3° cos 4° ………. cos 179°
= x + 1, then x=
(A)
–1 (B) 0 (C) 1 (D) none of these
7. If cos x + sin x = √2 cos x then tan2
x + 2 tan x =
(A) 0 (B) 1
(C) 2 (D) 3
8. If A = sin8 θ + cos14 θ, then for all values of θ
(A)
A > 1 (B)
A ≥ 1 (C) A < 1 (D) A ≤ 1
9. If θ is an acute angle and sin θ = cos θ ,
the value of 2tan2 θ + sin2
θ – 1 is
(A) ½ (B)
3/2 (C)
0 (D)
1
10. In an acute angled triangle ABC, if tan ( A +
B – C ) = 1 and sec ( B + C – A) = 2 ,
value of B =
(A)
60° (B) 52 (1/2 )° (C) 67
(1/2)° (D) 57 (1/2)°
11. An isosceles
triangle ABC is right-angled at B. D is a point inside the triangle ABC. P and Q are the feet of the perpendiculars drawn
from D on the sides AB and AC respectively of Δ ABC. If AP = a cm, AQ = b cm
and ∠BAD = 15º, sin75º =
(A) 2b/ √a (B) a/2b
(C) √3 a/ 2b (D) 2a/ √3 b
thank you !
ReplyDelete