17 August 2014

Trigonometry Practice questions Part –I

1. If sin x + sin2 x +sin3 x =1, then the value of  cos6 x −4cos4 x +8cos2 x =

       (A) 0                     (B) 2                 (C)  4                (D) 8

First Method:

The given equation can be written as
Sin x (1+sin2 x)= 1– sin2 x =cos2 x
sin x (2 – cos2 x) = cos2 x
sin2 x (2– cos2 x)2 = cos4 x  [after squaring both sides]
(1– cos2 x) (4– 4 cos2 x + cos4 x)= cos4 x
4– 4 cos2 x + cos4 x – 4 cos2 x + 4 cos4 x – cos6 x =  cos4 x
cos6 x −8cos4 x +4cos2 x = 4
Answer is option C

Second Method:

If x= 30°
sin x + sin2 x +sin3 x = ½ + ¼ +1/8  = 7/8 1
Here it is less than 1 but in second expression , it will more than 4
Because when sine decreases from 90° to 0° then cosine will increases in same range. i.e. sin 30° =1/2 but cos 30° =3/2
cos6 x −4cos4 x +8cos2 x = (3/2)6 – 8(3/2)4 +4 (3/2)2
27/32 – 4× 9/16 +8× ¾ = 147/32 which is more than 4
So we can choose option  C

You can solve many questions by taking value. But in sine and cosine you should careful at 45°

More questions for practice:

1.  If cot α +tan α =m and 1/ cos α – cosα = n then

       (A)   m (mn2)1/3 – n (nm2)1/3 = 1
      (B)  m (m2n)1/3 – n (mn2)1/3 = 1
      (C) n (mn2)1/3 – m (nm2)1/3 = 1
     (D) n (mn2)1/3 – m (mn2)1/3 = 1

2. If sin x + sin2 x = 1,  then the value of cos12 x + 3cos10 x +3cos8 x + cos6 x –1
    (A) 0                (B) 1                (C) –1               (D) 2
3.   If a cos3 α + 3a cos α sin2 α = m  and a sin3  α + 3a cos2 α sin α = n then
      (m + n)2/3 + (m– n )1/3  is equal to

               (A) 2a2              (B) 2a1/3               (C) 2a2/3              (D) 2a3

4.   6(sin6 θ + cos6 θ) – 9 (sin4 θ + cos4 θ) is equal to

       (A)  –1                 (B)  1                     (C) –3                     (D)    3

5. (1 + tan α tan β )2 + (tan α – tanβ )2  is equal to

        (A)  tan2 α +  tan2 β                           (B)   cos2 α   cos2 β
        (C)  sec2 α    sec2 β                            (D)  )  tan2 α   tan2 β

6.  If cos 1° cos 2° cos 3° cos 4° ………. cos 179° = x + 1, then x=

        (A)  –1              (B)  0             (C)   1                   (D)  none of these

7.   If cos x + sin x = √2 cos x then tan2 x + 2 tan x =

         (A) 0                    (B)   1             (C)      2                   (D) 3

8.     If A = sin8 θ +  cos14 θ, then for all values of θ

          (A)  A > 1            (B)  A ≥ 1          (C) A < 1                   (D) A ≤ 1

9.     If θ is an acute angle and sin θ = cos θ , the value of  2tan2 θ + sin2 θ – 1 is

          (A) ½             (B)  3/2            (C)   0              (D)   1

10.   In an acute angled triangle ABC, if tan ( A + B – C ) = 1 and sec ( B + C – A)   = 2 , value of B =

           (A)   60°  (B) 52 (1/2 )°    (C)  67 (1/2)°          (D) 57  (1/2)°

11. An isosceles triangle ABC is right-angled at B. D is a point inside the triangle ABC. P  and Q are the feet of the perpendiculars drawn from D on the sides AB and AC respectively of Δ ABC. If AP = a cm, AQ = b cm and BAD = 15º, sin75º =

           (A) 2b/ √a       (B)  a/2b         (C) √3 a/ 2b     (D) 2a/ √3 b

1 comment: